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A calculation of SO(8) Clebsch-Gordan coefficients 
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t Department of Physics, University of Southampton, Southampton, SO9 5NH, UK 
t Department of Mathematics, University of Southampton, Southampton, SO9 5NH, UK 

Received 30 December 1977 

Absiract. All Clebsch-Gordan coefficients required for calculations in the meson sector of 
a proposed SO@) model of elementary particles are obtained (as SU(4) singlet factors) by 
an extension of the general formalism of Gel’fand. 

1. Introduction 

In the past three years there has been a renewed interest in the possibility of new 
quantum numbers, and higher symmetry groups, in hadron physics. In particular, the 
narrow i+b resonances (Aubert et a1 1974, Augustin et a1 1974) have been associated 
with a new additive quantum number, ‘charm’ in an SU(4) scheme, and mesons 
carrying the new quantum number have subsequently been found (Goldhaber et a1 
1976, Feruzzi et UI 1976). A new heavy T- lepton, thought to be associated with the 
charm threshold, has also been reported (Per1 et a1 1975). Also a growing body of 
evidence, not least the recent discovery of the Y resonances (Herb et a1 1977), 
suggests that there may be yet further hadronic degrees of freedom beyond charm, 
still to be elucidated. 

One such scheme, incorporating a richer hadron spectrum, has a phenomenology 
based on the special orthogonal group SO(8) (Barnes et a1 1978). The purpose of this 
paper is to provide the Clebsch-Gordan coefficients necessary to perform calculations 
within the SO(8) scheme for scattering and decay amplitudes in the meson sector. 

In 02, we summarise some important facts about SO(8). The computational 
technique for calculating the coefficients is described in 5 3. Section 4 is a guide to 
tables 4 and 5, which give the singlet factors. 

2. General properties of SO@) 

SO(8) is the real compact Lie group corresponding to the Lie algebra D,. It has a 
natural subgroup SO(6) whose universal covering group is SU(4). In terms of Lie 
algebras, we have D4 13 D3 = A3. In this sense, SO(8) is a rank-four generalisation of 
the group SU(4). 

This statement is made more precise by specifying the generators of the subgroups 
involved. We work with a set of 28 anti-Hermitian SO(8) generators 

A , B = 1 , 2  ,..., 8, L B  = -LM, 
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with the commutation relations 

[ZAB ECDI = 8BCZ.AB + 8ADxBC - 8ACxBD - 8BDx’AC ; 

the 15 generators of SO(6) are the subset 

x I J  = - Z J I ,  I , J = 1 , 2  , . . . ,  6. 

For the 15 generators of SU(4), we take the sett 

A& = A L  a, b = 1,2,3,4,  

with commutation relations 

The Lie algebra isomorphism is established by constructing a non-singular map- 
ping between the two sets of generators. Since such a mapping preserves the Lie 
bracket structure, it is sufficient to specify it for the Cartan subalgebras, and for a set 
of simple roots. 

For SU(4) we choose as the Cartan subalgebra the set 

Ha = Aaa ,  a = 1,2,3,4.  

The remaining generators have the root structure 

r ( A a 6 )  = ea - e6, a f b ,  a , b = l , 2 , 3 , 4 .  

For S0(8),  we choose as the Cartan subalgebra the set 

K a = i & a - 1 2 a ?  a = 1,2,3,4 

and defining (for a < b) 

D&=;(-i x 2 a - 1 2 6 - 1 + x 2 a - 1  2 6 - x 2 a 2 6 - 1 - i x 2 a 2 6  

Da=;(i Z 2 a - 1 2 6 - 1 + Z 2 a - 1 2 6 + Z 2 a 2 6 - 1 - i C 2 a 2 6 )  

Da =&i x ’ Z a - l 2 6 - l - x 2 0 - 1  2 6 - x 2 a  26-1 -i x 2 a  26) 

Da x 2 0 - 1 2 6 - 1 - x 2 a - 1 2 6  + Z 2 a  26-1 - i  Z 2 a  26) 

we find the root structure 

r(D&) = ea - e6 

r(D6) = -ea - e6 

r(Dah) = ea +e6 

r( Da6) = - e, + e6. 
We can now write down the isomorphism of the Lie algebras of SU(4) and SO(6). 

We identify 

A 1 2  = D 1 2  A 2 3  = 0 2 3  A 3 4  = D i 2  

Hi = Ki - H 4 ,  
(2.3) 

i = 1, 2,3 H4 = f(Kl + K2 + K 3 ) .  

Irreducible representations of SO(8) can be given explicitly in terms of the 
Gel’fand basis (Gel’fand and Zetlin 1950, Wong 1967, Gilmore 1970), which uses the 

t Our notational conventions for indices are as follows: 

i, j =  1 , 2 , 3 ;  I , J = 1 , 2  , . . . ,  6; a, b = 1 , 2 , 3 , 4 ;  A , E = l , 2  , . . . ,  8.  
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property that every basis state in each irreducible representation of SO@) is contained 
in precisely one sequence of irreducible representations in a descending subgroup 
chain, 

SO(8) 3 SO(7) 3 SO(6) 3 .  . .3 SO(3) 3 SO(2). (2.4) 

Thus, states are specified by Gel’fand patterns, 

(2.5) 

u48 \ IU1* U17 U 2 7  U37 

U2 8 U38 

(2.6) 

u36 

U 1 6  U 2 6  

U1 5 U 2  5 

U14 U 2 4  

U 1  3 

U12 

where the uaA are all integers or all half-odd integers, and [UlA, uZA,. . .] specifies an 
irreducible representation of SO(A) such that 

U I ~ ~ + I ~ ~ I ~ ~ * U Z Z ~ + I ~ * .  ~ 3 ~ o - 1 2 a + 1 * ~ a - l 2 a P ~ a z a + l ~ ~ a 2 a ~ - ~ a 2 a + l  

and 

U1 Za 3 U1 Za-1  3 U2 Za 2. . .a ua-l Za a ua-l Za-1  3 [ua-l Z a l  2 0 

for 2a, 2a + 1 = 2 , 3 , .  . . ,8. 

states according to the modified subgroup chain 
In the following, the SO(6) subgroup plays a central role. It is convenient to label 

(2.7) 

in order to emphasise this. The last three subgroups embody the more familiar 
Gel’fand labelling for SU(4) (Nagel and Moshinsky 1965, Haacke er a1 1976) in which 
the diagonal quantum numbers are the component along the isospin quantisation axis, 
Z3, the ‘strange’ hypercharge, Y, and the ‘charm’ hypercharge, Z, defined by (Haacke 
et a1 1976) 

SO(8) 2 SO(6) x SO(2) = SU(4)/& X U( 1) 3 SU(3) 3 SU(2) = U(l)  

In addition, in thkmodified subgroup labelling chain, multiplets of SO(6) = SU(4)/Z2 
within an irreducible representation of SO(8) are distinguished by a further, additive, 
hypercharge-like quantum number X, defined by 

X=i2,:78=K4. (2.9) 

Hereafter, we shall refer to the basis for irreducible representations of SO@), cor- 
responding to the modified subgroup chain (equation (2.7)) loosely as the ‘SU(4)x 
U( 1)’ basis. The basis transformation from the previous SO(7) =I SO(6) basis is given 
in 3 3 .  

It should be pointed out that the new basis does not provide a complete state 
labelling scheme, since we have replaced a set of three non-additive SO(7) labels with 
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a single additive quantum number, X. For completeness, the basis should be aug- 
mented by the eigenvalues of two additional higher-order SO(6) invariants which 
commute with X, such as 

(2.10) 

However, for the SO(8) multiplets which we are concerned with, these additional 
labels are redundant, and will not be considered furthert. 

The first few irreducible representations of SO(8) are listed in table 1, with their 
dimensions and SU(4) x U( 1) restrictions. There are three eight-dimensional irre- 
ducible representations: two spinor ones, 8, and e-, and the defining (or vector) 
representations 8. Since 8, x 8 contains 8-, it follows that only two of these three are 
elementary. Each irreducible representation of SO(8) is self-conjugate and ortho- 
gonal (qnd so can be brought to real form). The D4 Dynkin diagram 4 
possesses a permutation symmetry associated with a group of outer automorphisms of 
D4. The existence of this group leads to the occurrence of inequivalent irreducible 
representations of the same dimensions whose Dynkin labels (al a2 2) (the 
components of the highest weight in the direction of the simple roots) differ only by a 
permutation of the three outer values. Thus, for example, there is only one represen- 
tation (0 2 z), with dimensions E, but three inequivalent representations (2 0 g), 
(0 0 i), (0 0 ,"), of the same dimension, called here 35,35+ and s-, respectively. 

We comment only very briefly here on the SO(8) model, details of which are given 
elsewhere (Barnes et a1 1978). It suffices to say that the quarks are assigned to the 
fundamental - representation 8+, which has the SU(4) X U( 1) decomposition 8, = 
4-; + $4. Outer products of 4, give successively 

8, x 8, = q q +  (35, -t k>m, 

+ - -  i 
i 

8+X S+ X t j  - 56- + 2 ( E +  + 8,)- +(U+ + !+)=, tr 

the symmetry being indicated by the Young frame. Mesons are assigned to the 
multiplets 28+35++!  (for both spin-0 and spin-1), and baryons to the multiplets 
ru+ 160 + 8, (for spin-;) and U+ + 8, (for spin-?). The SU(4) x U( 1) decompositions of 
the meson multiplets, with which we are concerned in the following, are 

2_8 = 6-1 + (15 + I)o + 61, 3 5 + = ~ - l + ~ _ 5 , + 1 0 1 ,  and 

3. Computation of the SU(4) singlet factors 

In order to compute SO(8) Clebsch-Gordan coefficients, we require the matrix 

t In particular, the labels X', X", are redundant for the following SO@) representations: [U, U, U, U' ] ,  

[U, U, U' ,  U'], [U, U', U', U'] and [U, U,;, -41. 
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Table 1. Labels and dimensions of SO(8) multiplets and their SU(4) X U( 1 ) ~  
decompositions. 

1029 

[(.I Dynkin Dimension and SU(4) X U(1)x 
label restriction 

- -  
112- =20-$+36-4 +36+1+20+1 

160, =20'-$+(36+20'+4)-5+(36+20'+4)g +20; 

160- = 20!.$+(36 +20'+4)4 +(36+20'+4)1+20'; 

160 = 6,2 +(20"+ 15 + 1)*1+ (64+6 +6)0 

elements of the SO(8) generators in any irreducible representation. These are known 
in terms of the Gel'fand basis, equation (2.5) (Gel'fand et a1 1963, Gilmore 1970). 
For example, 

b + p 2 c + l  2 J U )  

n',= 1(Ta 2 c i l - t  Tb 2c)(7a 2 c + l -  76 2c - 1) n::: (7, 2c-1-t Tb 2c)(Ta 2c-1- Tb 2c-1) ''* 
2 ) 2 2 2  = (  4 n : = l , a f b  (Ta 2c - 7 6  2c)[70 2c -(Tb 2c + 1) 1 

where 

C:A = UaA + 8ab8A2o  l s b s c ,  

(3.1) - 
T, 2c = ua2c + c  - a and T, 2c+l - ua2c+l + c  - a + 1. 
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However, as emphasised above, we wish here to work in the SU(4) X U( 1) basis, and to 
use previous SU(4) results (Haacke et a1 1976). 

Firstly, we establish the connection between the orthogonal (SO(6) 3 SO(5) 3 

. . .I SO(2)) and unitary (SU(4) 3 SU(3) 3 .  . . 3  U(1)) Gel’fand bases. The represen- 
tation labels [(+I and {U} of SO(6) and SU(4) are related through 

(+3 = +( v1 - U 2  - Y3). 

Using equation (2.3), we can identify the isospin subgroup SU(2)r of SU(4) with one 
of the SU(2) subgroups of SO(4) SE SU(2) x SU(2)/Z2 X Zz in S0(6), generated by 
C a b  = -&,a, a, 6 = 1 ,2 ,3 ,4 .  The generators are: 

(3.3) 

The other SU(2) factor has the generators: 

W+= -A-- -  34 - - D,Z= ;(-- & + i ~ 3 1 )  +;(-xi4 + i zz4), 
(3.4) 

W3 = ;( - H3 +H4) = $(Kl + K2) = 4 i(& +X34) 

and we shall distinguish it as SU(2)w. The representation labels ( W, Z )  of SU(2)w X 

SU(2)I and [(+14, aZ4] of SO(4) are related by 

w = & a 1 4  + a 2 4 1  I = $((+I4 - 0 2 4 ) .  (3.5) 

Now the state of highest weight In) in any irreducible representation {u l  v2 u3} of 
SU(4) is unique (up to a phase). In the Gel’fand basis 

Y3 ’> U1 v2 v3 

U1 U2 

V l  v2 
IQ) = 

v1 

and in terms of the labels Z3, Y, and Z (equation (2.8)), since (Gel’fand et a1 1963) 

u24 U34 u44\ 
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we have (Haacke et a1 1976) 

Y p ) = ; ( v 1 + v 2 - 2 v 3 ) p )  (3.6) 

Z ( n )  =;(VI + v2 + v3)ln). 

We can use these conditions to identify the corresponding state In)’ in the S 0 ( 6 ) 1  
SO(5) . . . =S0(2) basis. In view of equations (2.3) and (2.8), 

K$)’ = a3lfl)’ K21O)’ = - 4n)’ K ~ I ~ ) ’  = - alln)’. (3.7) 
From equations (3.3) and (3.4), it is evident that K1 = ;( W3 + 13) is already diagonal 

in the SO(6) 3 SO(5) 3 SO(4) 3.  . . 3 SO(2) basis, whereas K2 = $( W, - 13) may be 
diagonalised in addition by passing to the SU(2)w X SU(2)1 basis for SO(4); the basis 
transformation coefficients are just SU(2) Clebsch-Gordan coefficients. Finally, K3 = 
i E56 must be diagonalised by computing its matrix elements in this basis (cf equation 
(3.1)). The existence of IO) ensures that there is a unique solution IO)’ to equations 
(3.7), up to a phase?. 

Once this identification has been established, the basis transformation between 
SU(4) 3 SU(3) 3 .  . .2 U(l)  states and SO(6) 2 SO(5) 2. . .I> SO(2) states is completed 
by acting with the appropriate lowering operators, Ai2 = D:2, Ai3 = Di3 and A14 = 
Di2,  on IO) = IO)’, the matrix elements being computed using results like equation 
(3.1) (Gel’fand et a1 1963, Gilmore 1970, Haacke et a1 1976). This procedure is 
illustrated in table 2 for the Q (i.e. (2 11) of SU(4), and [l 101 of SO(6)). The 
notation for labelling SU(4) states is explained in § 4. 

The next stage in establishing the matrix elements of SO(8) generators in the 
SU(4) X U(1) basis is to diagonalise the U( 1) generator X = K4 = i &. This is readily 
done and requires taking linear combinations 

of appropriate pairs of Gel’fand states, corresponding to a transformation from an 
SO(6) x SO(2) basis to the SO(6) X U(1)z  SU(4)/z2 X U(l )  basis. However these 
linear combinations are defined only up to an overall phase for each SU(4)xU(l) 
multiplet. This phase arbitrariness is reflected, for example, in the matrix elements of 
the generator E76 in this basis, and must be removed by a choice of phase convention. 

At this point it should be recalled that the adoption of the SU(4) x U( l )  basis 
involves the Gel’fand phase convention for SU(4) that the matrix elements of A12, 
A23 and A34 (or, in view of equations (2.3), of D12, 0 2 3  and on), be positive. Also, 
from equations (2.2), we have 

(3.8) &6 = i(D34 - 0 4 4  + D3h - 0 4 4 ) .  

t Another possibility is to start instead with the state of highest weight in the SO(6) basis, and to identify the 
corresponding state in the SU(4) basis. This can be done explicitly, and we have, up to a phase, 
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Table 2. Basis transformation between SU(4) and SO(6) basis states for E. 

i 2  2 l  2 1 1 )  

1223 
i21y) 
l 2  2 1 1  O )  

/2:10) 
1_ 2 1 0  O )  

j.2:."i 
l 2  1 ;  1 O )  

l 1  1 1 1 l )  

I'.aO0) 

1 1  

2 1  2 '3 1 io:)  i1"> +- 1 

+- +- _ -  

0 0 0 

1 1  
__ 1 1 o ) + i  : 1:) 

f i 1  
- 1  - 1  

1 
- 1  :> 
- 
.h 1 

1 ")i 1 
1 :) 

1 
- 1  -:9 

0 
0 '> 

0 
0 7 
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Table >-continued 

1 Noting equations (2.8), the shift properties (AX, AZ,  AY)  of D34, D3b are ( -  1, -5, - 
3) and (- 1, 1, $), respectively. However, 

so that, in addition to D12, 0 2 3  and Di2, only one of 034 and Df4 is an independent 
shifting operator. 

In analogy with the SU(4) case, we adopt the convention that the matrix elements 
of D34 be positive; where a given state is mapped to two different states in the same 
SU(4) X U( 1) multiplet, the state with higher weight has a positive matrix element.. (In 
the unitary case, this qualification is superfluous, since all matrix elements are posi- 
tive.) 

With this choice, the transformation between the SO(7) = SO(6) and the SU(4) x 
U(l) bases in any irreducible representation of SO(8) is determined, and the matrix 
elements of the SO(8) generators in the SU(4)XU(1) basis may be written down, 
enabling direct products of irreducible representations of SO(8) to be decomposed 
into their irreducible representations of SO(8) to be decomposed into their irreducible 
parts. Table 3 gives the matrix elements of 034 in the basic representation 8,. The 
notation for labelling states is explained in 0 4. 
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Table 3. Non-zero matrix elements of Dj4 in the 8, multiplet. 

4. Tables of singlet factors 

The general SO(8) Clebsch-Gordan coefficient is written as 

where the irreducible representation labels [al u2 u3 U*] ,  {vl  v 2  v3}, {pl p2} and {Al} of 
SO@), SU(4), SU(3) and SU(2), respectively, have been replaced by their dimensions 
U, v, p and A, and 

is the SU(4) singlet factor, 

1 ) is the SU(3) singlet factor, (c*:bl pzz2 p z  

(A:;, Ar;2 1 LY) 
is the SU(2) (de Swart) factor, 

and Ct$$3 is the SU(2) Clebsch-Gordan coefficient. 
Singlet factors are arranged in tables, according to the values of v and X (or p and 

2, A and Y, etc). The following phase conventions for the singlet factors are adopted. 
(i) The highest Clebsch-Gordan coefficient in any expansion is defined to be + 1. 

This means that the highest single factor is also + 1.  
(ii) For fixed U (or v , p ,  etc), the highest singlet factor in the highest table is 

chosen to be positive. The highest table is the one having the highest X, and then 
highest v (or highest 2, and then highest p, etc). Within a table, the highest singlet 
factor is the one having the highest vl ,  and then highest v2 (or highest pl, and then 
highest p 2 ,  etc). l5, is taken to be higher than l&, and 8, higher than 83. 

(iii) ‘Highest’ for irreducible representations { v} of SU(4) means that irreducible 
representation having maximal 2, then maximal Y, then maximal 4. These 
definitions carry over similarly to SU(3), and SU(2). In the latter case, ‘highest’ simply 
means ‘highest dimensional’. 
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The singlet factors have the following symmetry properties, characterised by real 
phase factors, under interchange of factors 1 and 2, and complex conjugation: 

( A r k l  1 r y )  
1,121 = (- 1)1-11-12 I I I C I ~ ~ I Q ~  CI&, 13 

c""' = (- 1)I-Il-I2@21 
13,1a213 t a l - b 2 - I 3  

These relations embody the fact that for SO(8) and SU(2), the complex conjugates [C] 
and {,i} are equivalent to [U] and { A } ,  respectively. 

Table 4 gives the relevant SU(3) singlet factors required, in addition to those given 
by Haacke et a1 (1976), where the same phase conventions are used. All the relevant 
SU(2) singlet factors are also to be found there. 

Table 5 gives the SU(4) singlet factors for all SO(8) decompositions involving the 
representations 1, S,, 23 and 35, sufficient to perform calculations of the mass 
breaking, and of scattering and decay amplitudes in the meson sector of the SO(8) 
model. The symmetry factors t1 and t3 are also given. 
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