A calculation of $\mathrm{SO}(8)$ Clebsch-Gordan coefficients

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1978 J. Phys. A: Math. Gen. 111025
(http://iopscience.iop.org/0305-4470/11/6/007)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 18:52

Please note that terms and conditions apply.

A calculation of $\mathbf{S O}(8)$ Clebsch-Gordan coefficients

K J Barnes \dagger, P D Jarvis \dagger and I J Ketley \ddagger
\dagger Department of Physics, University of Southampton, Southampton, SO9 5NH, UK
\ddagger Department of Mathematics, University of Southampton, Southampton, SO9 5NH, UK

Received 30 December 1977

Abstract

All Clebsch-Gordan coefficients required for calculations in the meson sector of a proposed $\mathrm{SO}(8)$ model of elementary particles are obtained (as $\mathrm{SU}(4)$ singlet factors) by an extension of the general formalism of Gel'fand.

1. Introduction

In the past three years there has been a renewed interest in the possibility of new quantum numbers, and higher symmetry groups, in hadron physics. In particular, the narrow ψ resonances (Aubert et al 1974, Augustin et al 1974) have been associated with a new additive quantum number, 'charm' in an $\operatorname{SU}(4)$ scheme, and mesons carrying the new quantum number have subsequently been found (Goldhaber et al 1976, Peruzzi et al 1976). A new heavy τ^{-}lepton, thought to be associated with the charm threshold, has also been reported (Perl et al 1975). Also a growing body of evidence, not least the recent discovery of the Y resonances (Herb et al 1977), suggests that there may be yet further hadronic degrees of freedom beyond charm, still to be elucidated.

One such scheme, incorporating a richer hadron spectrum, has a phenomenology based on the special orthogonal group $\mathrm{SO}(8)$ (Barnes et al 1978). The purpose of this paper is to provide the Clebsch-Gordan coefficients necessary to perform calculations within the $\mathrm{SO}(8)$ scheme for scattering and decay amplitudes in the meson sector.

In § 2 , we summarise some important facts about $\mathrm{SO}(8)$. The computational technique for calculating the coefficients is described in §3. Section 4 is a guide to tables 4 and 5 , which give the singlet factors.

2. General properties of $\mathbf{S O}(8)$

$\mathrm{SO}(8)$ is the real compact Lie group corresponding to the Lie algebra D_{4}. It has a natural subgroup $\mathrm{SO}(6)$ whose universal covering group is $\mathrm{SU}(4)$. In terms of Lie algebras, we have $D_{4} \supset D_{3} \cong A_{3}$. In this sense, $\mathrm{SO}(8)$ is a rank-four generalisation of the group $\mathrm{SU}(4)$.

This statement is made more precise by specifying the generators of the subgroups involved. We work with a set of 28 anti-Hermitian $\mathrm{SO}(8)$ generators

$$
\Sigma_{A B}=-\Sigma_{B A}, \quad A, B=1,2, \ldots, 8
$$

with the commutation relations

$$
\begin{equation*}
\left[\Sigma_{A B}, \Sigma_{C D}\right]=\delta_{B C} \Sigma_{A B}+\delta_{A D} \Sigma_{B C}-\delta_{A C} \Sigma_{B D}-\delta_{B D} \Sigma_{A C} \tag{2.1}
\end{equation*}
$$

the 15 generators of $\mathrm{SO}(6)$ are the subset

$$
\Sigma_{I J}=-\Sigma_{J I}, \quad I, J=1,2, \ldots, 6
$$

For the 15 generators of $\operatorname{SU}(4)$, we take the set \dagger

$$
A_{a b}=A_{b a}^{\dagger}, \quad a, b=1,2,3,4
$$

with commutation relations

$$
\left[A_{a b}, A_{c d}\right]=\delta_{b c} A_{a d}-\delta_{a d} A_{c b} \quad \text { and } \quad \sum_{a=1}^{4} A_{a a}=0
$$

The Lie algebra isomorphism is established by constructing a non-singular mapping between the two sets of generators. Since such a mapping preserves the Lie bracket structure, it is sufficient to specify it for the Cartan subalgebras, and for a set of simple roots.

For $\mathrm{SU}(4)$ we choose as the Cartan subalgebra the set

$$
H_{a}=A_{a a}, \quad a=1,2,3,4 .
$$

The remaining generators have the root structure

$$
r\left(A_{a b}\right)=e_{a}-e_{b}, \quad a \neq b, \quad a, b=1,2,3,4
$$

For $\mathrm{SO}(8)$, we choose as the Cartan subalgebra the set

$$
K_{a}=\mathrm{i} \Sigma_{2 a-12 a}, \quad a=1,2,3,4
$$

and defining (for $a<b$)

$$
\begin{align*}
& D_{a b}=\frac{1}{2}\left(-\mathrm{i} \Sigma_{2 a-12 b-1}+\Sigma_{2 a-12 b}-\Sigma_{2 a 2 b-1}-\mathrm{i} \Sigma_{2 a 2 b}\right. \\
& D_{a \bar{b}}=\frac{1}{2}\left(\mathrm{i} \Sigma_{2 a-12 b-1}+\Sigma_{2 a-12 b}+\Sigma_{2 a 2 b-1}-\mathrm{i} \Sigma_{2 a 2 b}\right) \\
& D_{\bar{a} b}=\frac{1}{2}\left(\mathrm{i} \Sigma_{2 a-12 b-1}-\Sigma_{2 a-12 b}-\Sigma_{2 a 2 b-1}-\mathrm{i} \Sigma_{2 a 2 b}\right) \tag{2.2}\\
& D_{\bar{a} b}=\frac{1}{2}\left(-\mathrm{i} \Sigma_{2 a-12 b-1}-\Sigma_{2 a-12 b}+\Sigma_{2 a 2 b-1}-\mathrm{i} \Sigma_{2 a 2 b}\right)
\end{align*}
$$

we find the root structure

$$
\begin{array}{lr}
r\left(D_{a b}\right)=e_{a}-e_{b} & r\left(D_{a \bar{b}}\right)=e_{a}+e_{b} \\
r\left(D_{\bar{b}}\right)=-e_{a}-e_{b} & r\left(D_{\bar{a} \bar{b}}\right)=-e_{a}+e_{b} .
\end{array}
$$

We can now write down the isomorphism of the Lie algebras of $\mathrm{SU}(4)$ and $\mathrm{SO}(6)$. We identify

$$
\begin{array}{llc}
A_{12}=D_{12} & A_{23}=D_{23} & A_{34}=D_{\overline{1} 2} \\
H_{i}=K_{i}-H_{4}, & i=1,2,3 & H_{4}=\frac{1}{3}\left(K_{1}+K_{2}+K_{3}\right) . \tag{2.3}
\end{array}
$$

Irreducible representations of $\mathrm{SO}(8)$ can be given explicitly in terms of the Gel'fand basis (Gel'fand and Zetlin 1950, Wong 1967, Gilmore 1970), which uses the
† Our notational conventions for indices are as follows:

$$
i, j=1,2,3 ; \quad I, J=1,2, \ldots, 6 ; \quad a, b=1,2,3,4 ; \quad A, B=1,2, \ldots, 8 .
$$

property that every basis state in each irreducible representation of $\mathrm{SO}(8)$ is contained in precisely one sequence of irreducible representations in a descending subgroup chain,

$$
\begin{equation*}
\mathrm{SO}(8) \supset \mathrm{SO}(7) \supset \mathrm{SO}(6) \supset \ldots \supset \mathrm{SO}(3) \supset \mathrm{SO}(2) \tag{2.4}
\end{equation*}
$$

Thus, states are specified by Gel'fand patterns,

$$
\left\langle\begin{array}{ccccccccc}
\sigma_{18} & & \sigma_{28} & & & \sigma_{38} & & & \sigma_{48} \tag{2.5}\\
& \sigma_{17} & & & \sigma_{27} & & & \sigma_{37} & \\
& \sigma_{16} & & & \sigma_{26} & & & \sigma_{36} & \\
& & & \sigma_{15} & & & \sigma_{25} & & \\
& & & \sigma_{14} & & & \sigma_{24} & &
\end{array}\right\rangle
$$

where the $\sigma_{a A}$ are all integers or all half-odd integers, and $\left[\sigma_{1 A}, \sigma_{2 A}, \ldots\right]$ specifies an irreducible representation of $S O(A)$ such that
$\sigma_{12 a+1} \geqslant \sigma_{12 a} \geqslant \sigma_{22 a+1} \geqslant \ldots \geqslant \sigma_{a-12 a+1} \geqslant \sigma_{a-12 a} \geqslant \sigma_{a 2 a+1} \geqslant \sigma_{a 2 a} \geqslant-\sigma_{a 2 a+1}$
and

$$
\begin{equation*}
\sigma_{12 a} \geqslant \sigma_{12 a-1} \geqslant \sigma_{22 a} \geqslant \ldots \geqslant \sigma_{a-12 a} \geqslant \sigma_{a-12 a-1} \geqslant\left|\sigma_{a-12 a}\right| \geqslant 0 \tag{2.6}
\end{equation*}
$$

for $2 a, 2 a+1=2,3, \ldots, 8$.
In the following, the $\mathrm{SO}(6)$ subgroup plays a central role. It is convenient to label states according to the modified subgroup chain
$\mathrm{SO}(8) \supset \mathrm{SO}(6) \times \mathrm{SO}(2) \cong \mathrm{SU}(4) / \mathrm{Z}_{2} \times \mathrm{U}(1) \supset \mathrm{SU}(3) \supset \mathrm{SU}(2) \supset \mathrm{U}(1)$
in order to emphasise this. The last three subgroups embody the more familiar Gel'fand labelling for SU(4) (Nagel and Moshinsky 1965, Haacke et al 1976) in which the diagonal quantum numbers are the component along the isospin quantisation axis, I_{3}, the 'strange' hypercharge, Y, and the 'charm' hypercharge, Z, defined by (Haacke et al 1976)

$$
\begin{align*}
& I_{3}=\frac{1}{2} \mathrm{i}\left(\Sigma_{12}-\Sigma_{34}\right)=\frac{1}{2}\left(H_{1}-H_{2}\right) \\
& Y=\frac{1}{3} \mathrm{i}\left(\Sigma_{12}+\Sigma_{34}-2 \Sigma_{56}\right)=\frac{1}{3}\left(H_{1}+H_{2}-2 H_{3}\right) \tag{2.8}\\
& Z=-\frac{1}{2} \mathrm{i}\left(\Sigma_{12}+\Sigma_{34}+\Sigma_{56}\right)=-H_{4}
\end{align*}
$$

In addition, in this modified subgroup labelling chain, multiplets of $\mathrm{SO}(6) \cong \mathrm{SU}(4) / Z_{2}$ within an irreducible representation of $\mathrm{SO}(8)$ are distinguished by a further, additive, hypercharge-like quantum number X, defined by

$$
\begin{equation*}
X=\mathrm{i} \Sigma_{78}=K_{4} . \tag{2.9}
\end{equation*}
$$

Hereafter, we shall refer to the basis for irreducible representations of $\mathrm{SO}(8)$, corresponding to the modified subgroup chain (equation (2.7)) loosely as the ' $\mathrm{SU}(4) \times$ $U(1)$ ' basis. The basis transformation from the previous $S O(7) \supset S O(6)$ basis is given in § 3 .

It should be pointed out that the new basis does not provide a complete state labelling scheme, since we have replaced a set of three non-additive SO (7) labels with
a single additive quantum number, X. For completeness, the basis should be augmented by the eigenvalues of two additional higher-order $\mathrm{SO}(6)$ invariants which commute with X, such as

$$
\begin{align*}
X^{\prime} & =\sum_{I, J=1}^{6}\left(\Sigma_{7 I} \Sigma_{I J} \Sigma_{J 8}-\Sigma_{8 I} \Sigma_{I J} \Sigma_{J 7}\right), \\
X^{\prime \prime} & =\sum_{I, J=1}^{6}\left[\Sigma_{7 I}\left(\Sigma^{3}\right)_{I J} \Sigma_{J 8}-\Sigma_{8 I}\left(\Sigma^{3}\right)_{I J} \Sigma_{J 7}\right], \tag{2.10}
\end{align*}
$$

where

$$
\Sigma_{I J}^{n+1}=\sum_{K=1}^{6}\left(\Sigma^{n}\right)_{I K} \Sigma_{K J} .
$$

However, for the $\mathrm{SO}(8)$ multiplets which we are concerned with, these additional labels are redundant, and will not be considered further \dagger.

The first few irreducible representations of $\mathrm{SO}(8)$ are listed in table 1, with their dimensions and $S U(4) \times U(1)$ restrictions. There are three eight-dimensional irreducible representations: two spinor ones, 8_{+}and 8_{-}, and the defining (or vector) representations 8 . Since ${\underset{\sim}{+}}_{+} \times 8$ contains ${\underset{\sim}{*}}_{-}$, it follows that only two of these three are elementary. Each irreducible representation of $\mathrm{SO}(8)$ is self-conjugate and orthogonal (and so can be brought to real form). The D_{4} Dynkin diagram possesses a permutation symmetry associated with a group of outer automorphisms of D_{4}. The existence of this group leads to the occurrence of inequivalent irreducible representations of the same dimensions whose Dynkin labels ($a_{1} a_{2} a_{4}^{a_{3}}$) (the components of the highest weight in the direction of the simple roots) differ only by a permutation of the three outer values. Thus, for example, there is only one representation ($02{ }_{0}^{0}$), with dimensions $\underset{300}{0}$, but three inequivalent representations $\left(20{ }_{0}^{0}\right)$, $\left(00_{0}^{2}\right),\left(00_{2}^{0}\right)$, of the same dimension, called here 35,35 , and 35 -, respectively.

We comment only very briefly here on the $\mathrm{SO}(8)$ model, details of which are given elsewhere (Barnes et al 1978). It suffices to say that the quarks are assigned to the fundamental representation ${\underset{\sim}{+}}_{+}$, which has the $\mathrm{SU}(4) \times \mathrm{U}(1)$ decomposition ${\underset{\sim}{+}}_{+}=$ $\overline{4}_{-\frac{1}{2}}+4_{\frac{1}{2}}$. Outer products of 8_{+}give successively

$$
\begin{aligned}
& 8_{+} \times 8_{+}={\underset{\sim}{8}}_{\square}+(\underline{35}+1)_{\square}, \\
& 8_{+} \times 8_{+} \times{\underset{\sim}{+}}_{+}=56_{-}+2\left(\underline{160_{+}}+\underline{8}_{+}\right)_{\square}+\left(\underline{112}+8_{+}\right)_{\square},
\end{aligned}
$$

the symmetry being indicated by the Young frame. Mesons are assigned to the multiplets $28+35_{+}+1$ (for both spin-0 and spin-1), and baryons to the multiplets $160_{+}+8_{+}$(for spin- $\frac{1}{2}$) and $\underline{12}_{+}+8_{+}\left(\right.$for spin- $\frac{3}{2}$). The $\mathrm{SU}(4) \times \mathrm{U}(1)$ decompositions of the meson multiplets, with which we are concerned in the following, are

$$
28=6_{-1}+(15+1)_{0}+6_{1}, \quad \underline{35}+=\underline{10}_{-1}+\underline{15}_{0}+\underline{10}_{1}, \quad \text { and } \quad 1=1_{0} .
$$

3. Computation of the $\mathbf{S U}(\mathbf{4})$ singlet factors

In order to compute $\mathbf{S O}(8)$ Clebsch-Gordan coefficients, we require the matrix

[^0]Table 1. Labels and dimensions of $\mathrm{SO}(8)$ multiplets and their $\mathrm{SU}(4) \times \mathrm{U}(1)_{X}$ decompositions.

[σ]	Dynkin label	Dimension and $\mathrm{SU}(4) \times \mathrm{U}(1)_{X}$ restriction
$\left[\begin{array}{llll}\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2}\end{array}\right]$	$\left(\begin{array}{llll}0 & 0 & 1 \\ 0\end{array}\right)$	$8_{+}=\overline{4}_{-\frac{1}{1}}+4_{+\frac{1}{2}}$
$\left[\begin{array}{llll}\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2}\end{array}\right]$	$\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & & 1\end{array}\right)$	$8-=4_{-\frac{1}{2}}+\overline{4}_{+\frac{1}{2}}$
$\left[\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right]$	$\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & & 0\end{array}\right)$	$8=1_{-1}+6_{0}+1_{1}$
$\left[\begin{array}{llll}1 & 1 & 0 & 0\end{array}\right]$	$\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & & 0\end{array}\right)$	$28=6{ }_{-1}+15_{0}+1_{0}+6_{1}$
$\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]$	$\left(\begin{array}{lll}0 & 0 & 2 \\ 0\end{array}\right)$	$35_{+}=\overline{10}_{-1}+15_{0}+10_{1}$
$\left[\begin{array}{llll}1 & 1 & 1 & -1\end{array}\right]$	$\left(\begin{array}{lll}0 & 0 & 0 \\ 0\end{array}\right)$	$35_{-}=10{ }_{-1}+150+\overline{10}_{1}$
$\left[\begin{array}{llll}2 & 0 & 0 & 0\end{array}\right]$	$\left(\begin{array}{lll}2 & 0 & 0 \\ 2 & & 0\end{array}\right)$	$35=1_{-2}+6_{-1}+20_{0}^{\prime \prime}+1_{0}+6_{1}+1_{2}$
$\left[\begin{array}{llll}\frac{3}{2} & \frac{3}{2} & \frac{3}{2} & \frac{3}{2}\end{array}\right]$	$\left(\begin{array}{lll}0 & 0 & 3 \\ 0 & & 0\end{array}\right)$	$1122_{+}=\overline{20}_{-3 / 2}+\overline{36}_{-\frac{1}{+}}+36_{+1}+20_{+\frac{3}{2}}$
$\left[\begin{array}{lllll}\frac{3}{2} & \frac{3}{2} & \frac{3}{2} & -\frac{3}{2}\end{array}\right]$	$\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & & 3\end{array}\right)$	$112_{-}=20_{-\frac{3}{2}}+36_{-\frac{1}{2}}+\overline{36}_{+\frac{1}{2}}+\overline{20}_{+\frac{3}{2}}$
$\left[\begin{array}{llll}3 & 0 & 0 & 0\end{array}\right]$	$\left(\begin{array}{lll}3 & 0 & 0 \\ \hline\end{array}\right)$	$112=1_{ \pm 3}+6_{ \pm 2}+\left(20^{\prime \prime}+1\right)_{ \pm 1}+(50+6)_{0}$
$\left[\begin{array}{llll}\frac{3}{2} & \frac{3}{2} & \frac{1}{2} & \frac{1}{2}\end{array}\right]$	$\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & & 0\end{array}\right)$	$160_{+}=\overline{20^{\prime}}{ }_{-\frac{3}{2}}+\left(\overline{36}+20^{\prime}+\overline{4}\right)_{-\frac{1}{2}}+\left(36+\overline{20^{\prime}}+4\right)_{i}+20_{\frac{3}{2}}^{\prime}$
$\left[\begin{array}{llll}\frac{3}{2} & \frac{3}{2} & \frac{1}{2} & -\frac{1}{2}\end{array}\right]$	$\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & & 1\end{array}\right)$	$160_{-}=20_{-\frac{2}{2}}+\left(36+\overline{20^{\prime}}+4\right)_{-\frac{1}{2}}+\left(\overline{36}+20^{\prime}+\overline{4}\right)_{1}+\overline{20}_{\frac{3}{2}}^{\prime}$
$\left[\begin{array}{llll}2 & 1 & 0 & 0\end{array}\right]$	$\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & & 0\end{array}\right)$	$160=6_{ \pm 2}+\left(20^{\prime \prime}+15+1\right)_{ \pm 1}+(64+6+6)_{0}$

elements of the $\mathrm{SO}(8)$ generators in any irreducible representation. These are known in terms of the Gel'fand basis, equation (2.5) (Gel'fand et al 1963, Gilmore 1970). For example,

$$
\begin{aligned}
& \left\langle\sigma^{+}\right| \Sigma_{2 c+12 c}|\sigma\rangle \\
& \quad=\left(\frac{\prod_{a=1}^{c}\left(\tau_{a 2 c+1}+\tau_{b 2 c}\right)\left(\tau_{a 2 c+1}-\tau_{b 2 c}-1\right) \Pi_{a=1}^{c-1}\left(\tau_{a 2 c-1}+\tau_{b 2 c}\right)\left(\tau_{a 2 c-1}-\tau_{b 2 c-1}\right)}{4 \Pi_{a=1, a \neq b}^{c}\left(\tau_{a 2 c}^{2}-\tau_{b 2 c}^{2}\right)\left[\tau_{a 2 c}^{2}-\left(\tau_{b 2 c}+1\right)^{2}\right]}\right)^{1 / 2}
\end{aligned}
$$

where

$$
\begin{align*}
& \sigma_{a A}^{+}=\sigma_{a A}+\delta_{a b} \delta_{A 2 c}, \quad 1 \leqslant b \leqslant c, \\
& \tau_{a 2 c}=\sigma_{a 2 c}+c-a \quad \text { and } \quad \tau_{a 2 c+1}=\sigma_{a 2 c+1}+c-a+1 . \tag{3.1}
\end{align*}
$$

However, as emphasised above, we wish here to work in the $\mathrm{SU}(4) \times \mathrm{U}(1)$ basis, and to use previous SU(4) results (Haacke et al 1976).

Firstly, we establish the connection between the orthogonal $(\mathrm{SO}(6) \supset \mathrm{SO}(5) \supset$ $\ldots \supset \mathrm{SO}(2)$) and unitary $(\mathrm{SU}(4) \supset \mathrm{SU}(3) \supset \ldots \supset \mathrm{U}(1))$ Gel'fand bases. The representation labels $[\sigma]$ and $\{\nu\}$ of $S O(6)$ and $S U(4)$ are related through

$$
\begin{align*}
& \sigma_{1}=\frac{1}{2}\left(\nu_{1}+\nu_{2}-\nu_{3}\right) \\
& \sigma_{2}=\frac{1}{2}\left(\nu_{1}-\nu_{2}+\nu_{3}\right) \tag{3.2}\\
& \sigma_{3}=\frac{1}{2}\left(\nu_{1}-\nu_{2}-\nu_{3}\right) .
\end{align*}
$$

Using equation (2.3), we can identify the isospin subgroup $\mathrm{SU}(2)_{I}$ of $\mathrm{SU}(4)$ with one of the $\mathrm{SU}(2)$ subgroups of $\mathrm{SO}(4) \cong \mathrm{SU}(2) \times \mathrm{SU}(2) / \mathrm{Z}_{2} \times \mathrm{Z}_{2}$ in $\mathrm{SO}(6)$, generated by $\Sigma_{a b}=-\Sigma_{b a}, a, b=1,2,3,4$. The generators are:

$$
\begin{align*}
& I_{+}=A_{12}=D_{12}=\frac{1}{2}\left(-\Sigma_{23}+\mathrm{i} \Sigma_{31}\right)-\frac{1}{2}\left(-\Sigma_{14}+\mathrm{i} \Sigma_{24}\right) \\
& I_{3}=\frac{1}{2}\left(H_{1}-H_{2}\right)=\frac{1}{2}\left(K_{1}-K_{2}\right)=\frac{1}{2} \mathrm{i}\left(\Sigma_{12}-\Sigma_{34}\right) \tag{3.3}
\end{align*}
$$

The other $S U(2)$ factor has the generators:

$$
\begin{align*}
& W_{+}=-A_{3 \overline{4}}=-D_{1 \overline{2}}=\frac{1}{2}\left(-\Sigma_{23}+\mathrm{i} \Sigma_{31}\right)+\frac{1}{2}\left(-\Sigma_{14}+\mathrm{i} \Sigma_{24}\right) \\
& W_{3}=\frac{1}{2}\left(-H_{3}+H_{4}\right)=\frac{1}{2}\left(K_{1}+K_{2}\right)=\frac{1}{2} \mathrm{i}\left(\Sigma_{12}+\Sigma_{34}\right) \tag{3.4}
\end{align*}
$$

and we shall distinguish it as $S U(2)_{W}$. The representation labels (W, I) of $S U(2)_{W} \times$ $\mathrm{SU}(2)_{I}$ and $\left[\sigma_{14}, \sigma_{24}\right]$ of $\mathrm{SO}(4)$ are related by

$$
\begin{equation*}
W=\frac{1}{2}\left(\sigma_{14}+\sigma_{24}\right) \quad I=\frac{1}{2}\left(\sigma_{14}-\sigma_{24}\right) . \tag{3.5}
\end{equation*}
$$

Now the state of highest weight $|\Omega\rangle$ in any irreducible representation $\left\{\nu_{1} \nu_{2} \nu_{3}\right\}$ of $\mathrm{SU}(4)$ is unique (up to a phase). In the Gel'fand basis

$$
|\Omega\rangle=\left|\begin{array}{lllllll}
\nu_{1} & & \nu_{2} & & \nu_{3} & & 0 \\
& \nu_{1} & & \nu_{2} & & \nu_{3} & \\
& & \nu_{1} & & \nu_{2} & &
\end{array}\right\rangle
$$

and in terms of the labels I_{3}, Y, and Z (equation (2.8)), since (Gel'fand et al 1963)

we have (Haacke et al 1976)

$$
\begin{align*}
I_{3}|\Omega\rangle & =\frac{1}{2}\left(\nu_{1}-\nu_{2}\right)|\Omega\rangle \\
Y|\Omega\rangle & =\frac{1}{3}\left(\nu_{1}+\nu_{2}-2 \nu_{3}\right)|\Omega\rangle \tag{3.6}\\
Z|\Omega\rangle & =\frac{1}{4}\left(\nu_{1}+\nu_{2}+\nu_{3}\right)|\Omega\rangle
\end{align*}
$$

We can use these conditions to identify the corresponding state $|\Omega\rangle^{\prime}$ in the $\mathrm{SO}(6) \supset$ $\mathrm{SO}(5) \ldots \supset \mathrm{SO}(2)$ basis. In view of equations (2.3) and (2.8),

$$
\begin{equation*}
K_{1}|\Omega\rangle^{\prime}=\sigma_{3}|\Omega\rangle^{\prime} \quad K_{2}|\Omega\rangle^{\prime}=-\sigma_{2}|\Omega\rangle^{\prime} \quad K_{3}|\Omega\rangle^{\prime}=-\sigma_{1}|\Omega\rangle^{\prime} \tag{3.7}
\end{equation*}
$$

From equations (3.3) and (3.4), it is evident that $K_{1}=\frac{1}{2}\left(W_{3}+I_{3}\right)$ is already diagonal in the $\mathrm{SO}(6) \supset \mathrm{SO}(5) \supset \mathrm{SO}(4) \supset \ldots \supset \mathrm{SO}(2)$ basis, whereas $K_{2}=\frac{1}{2}\left(W_{3}-I_{3}\right)$ may be diagonalised in addition by passing to the $\mathrm{SU}(2)_{W} \times S U(2)_{I}$ basis for $\mathrm{SO}(4)$; the basis transformation coefficients are just $\mathrm{SU}(2)$ Clebsch-Gordan coefficients. Finally, $K_{3}=$ i Σ_{56} must be diagonalised by computing its matrix elements in this basis (cf equation (3.1)). The existence of $|\Omega\rangle$ ensures that there is a unique solution $|\Omega\rangle^{\prime}$ to equations (3.7), up to a phase \dagger.

Once this identification has been established, the basis transformation between $\mathrm{SU}(4) \supset \mathrm{SU}(3) \supset \ldots \supset \mathrm{U}(1)$ states and $\mathrm{SO}(6) \supset \mathrm{SO}(5) \supset \ldots \supset \mathrm{SO}(2)$ states is completed by acting with the appropriate lowering operators, $A_{12}^{\dagger}=D_{12}^{\dagger}, A_{23}^{\dagger}=D_{23}^{\dagger}$ and $A_{34}^{\dagger}=$ D_{12}^{\dagger}, on $|\Omega\rangle=|\Omega\rangle^{\prime}$, the matrix elements being computed using results like equation (3.1) (Gel'fand et al 1963, Gilmore 1970, Haacke et al 1976). This procedure is illustrated in table 2 for the 15 (i.e. $\{211\}$ of $S U(4)$, and [1110] of $\operatorname{SO}(6)$). The notation for labelling $\operatorname{SU}(4)$ states is explained in § 4.

The next stage in establishing the matrix elements of $\mathrm{SO}(8)$ generators in the $\mathrm{SU}(4) \times \mathrm{U}(1)$ basis is to diagonalise the $\mathrm{U}(1)$ generator $X=K_{4}=\mathrm{i} \Sigma_{78}$. This is readily done and requires taking linear combinations

$$
\frac{1}{\sqrt{2}}|1\rangle \pm \frac{i}{\sqrt{2}}|2\rangle
$$

of appropriate pairs of Gel'fand states, corresponding to a transformation from an $S O(6) \times S O(2)$ basis to the $S O(6) \times U(1) \cong S U(4) / Z_{2} \times U(1)$ basis. However these linear combinations are defined only up to an overall phase for each $\operatorname{SU}(4) \times U(1)$ multiplet. This phase arbitrariness is reflected, for example, in the matrix elements of the generator Σ_{76} in this basis, and must be removed by a choice of phase convention.

At this point it should be recalled that the adoption of the $\mathrm{SU}(4) \times \mathrm{U}(1)$ basis involves the Gel'fand phase convention for $S U(4)$ that the matrix elements of A_{12}, A_{23} and A_{34} (or, in view of equations (2.3), of D_{12}, D_{23} and $D_{\overline{1} 2}$), be positive. Also, from equations (2.2), we have

$$
\begin{equation*}
\Sigma_{76}=\frac{1}{2}\left(D_{34}-D_{34}^{\dagger}+D_{34}-D_{34}^{\dagger}\right) \tag{3.8}
\end{equation*}
$$

\dagger Another possibility is to start instead with the state of highest weight in the $\operatorname{SO}(6)$ basis, and to identify the corresponding state in the $\operatorname{SU}(4)$ basis. This can be done explicitly, and we have, up to a phase,

$$
\left|\begin{array}{lllll}
\sigma_{1} & & \sigma_{2} & & \sigma_{3} \\
& \sigma_{1} & & \sigma_{2} & \\
& \sigma_{1} & & \sigma_{2} & \\
& & \sigma_{1} & &
\end{array}\right\rangle=\left|\begin{array}{lllllll}
\nu_{1} & & \nu_{2} & & \nu_{3} & & 0 \\
& \nu_{2} & & v_{3} & & 0 & \\
& & v_{2} & & \nu_{3} & & \\
& & & v_{2} & & &
\end{array}\right\rangle
$$

Table 2. Basis transformation between $\mathrm{SU}(4)$ and $\mathrm{SO}(6)$ basis states for 15 .
$\left|\nu_{i j}\right\rangle^{\{211\}} \quad\left|\begin{array}{ll}\mu & Z \\ \lambda & Y \\ I_{3}\end{array}\right\rangle^{\{211\}} \quad\left|\sigma_{i I}\right\rangle^{[110]}$

$\left\|\begin{array}{lll}2 & 1 & 1 \\ & 2 & 1\end{array}\right\|$	$\left\|\begin{array}{cc}3 & 1 \\ 2 & \frac{1}{3} \\ & \frac{1}{2}\end{array}\right\rangle$	$\left.-\frac{1}{2}\left\|\begin{array}{cc}1 & 1 \\ 1 & 0 \\ 1 \\ 0\end{array}\right\rangle+\frac{\mathrm{i}}{2}\left\|\begin{array}{cc}1 & 1 \\ 1 & 0 \\ 0 \\ 0\end{array}\right\rangle+\frac{\mathrm{i}}{2} \right\rvert\,$	$\left\|\begin{array}{ll}1 & 0 \\ 1 & 0 \\ 1 \\ 0\end{array}\right\rangle+\frac{1}{2}\left\|\begin{array}{ll}1 & 0 \\ 1 & 0 \\ 0 \\ 0\end{array}\right\rangle$
$\left\|\begin{array}{lll}2 & 1 & \\ & 2 & 1 \\ & & 1\end{array}\right\|$	$\left\|\begin{array}{cc}3 & 1 \\ 2 & \frac{1}{3} \\ & -\frac{1}{2}\end{array}\right\rangle$	$-\frac{1}{\sqrt{2}}\left\|\begin{array}{cc}1 & 1 \\ 1 & 0 \\ \\ -1\end{array}\right\rangle+\frac{i}{\sqrt{2}}\left\|\begin{array}{cc}1 & 0 \\ 1 & 0 \\ & 1 \\ -1\end{array}\right\rangle$	
$\left\|\begin{array}{llll}2 & & 1 & \\ & 1 & 1 \\ & & & 1\end{array}\right\|$	$\left\|\begin{array}{ll}3 & 1 \\ 1 & -\frac{2}{3} \\ & 0\end{array}\right\|$	$\left\|\begin{array}{cc}1 & 1 \\ 1 & 1 \\ & 1 \\ -1\end{array}\right\rangle$	
$\left\|\begin{array}{lll}2 & 1 & 0 \\ & 2 & \\ & & 1\end{array}\right\|$	$\left\|\begin{array}{cc}8 & 0 \\ 2 & 1 \\ \frac{1}{2}\end{array}\right\rangle$	$\frac{1}{\sqrt{2}}\left\|\begin{array}{ll}1 & 1 \\ 1 & 0 \\ & 1 \\ 1\end{array}\right\rangle-\frac{i}{\sqrt{2}}\left\|\begin{array}{ll}1 & 0 \\ 1 & 0 \\ 1 \\ 1\end{array}\right\rangle$	
$\left\|\begin{array}{llll}2 & 1 & & 0 \\ & 2 & & 1 \\ & & 1\end{array}\right\|$	$\left\|\begin{array}{cc}8 & 0 \\ 2 & 1 \\ -\frac{1}{2}\end{array}\right\rangle$	$\left.\frac{1}{2}\left\|\begin{array}{cc}1 & 1 \\ 1 & 0 \\ 1 \\ 0\end{array}\right\rangle+\frac{i}{2}\left\|\begin{array}{cc}1 & 1 \\ 1 & 0 \\ 0 \\ 0\end{array}\right\rangle-\frac{i}{2} \right\rvert\, \begin{aligned} & 1 \\ & 1\end{aligned}$	$\left.\begin{array}{l}0 \\ 1 \\ 0\end{array}\right\rangle+\frac{1}{2}\left\|\begin{array}{ll}1 & 0 \\ 1 & 0 \\ 0 \\ 0\end{array}\right\rangle$
$\left\|\begin{array}{lll}2 & 1 & 0 \\ & 2 & \\ & & 0\end{array}\right\|$	$\left\|\begin{array}{ll}8 & 0 \\ 3 & 0 \\ & 1\end{array}\right\|$	$\left\|\begin{array}{rr}1 & 1 \\ 1 & -1 \\ & 1 \\ 1\end{array}\right\rangle$	
$\left\|\begin{array}{lll}2 & 1 & 0 \\ & 2 & \\ & & 0\end{array}\right\|$	$\left\|\begin{array}{ll}8 & 0 \\ 3 & 0 \\ 0\end{array}\right\|$	$\left\|\begin{array}{cc}1 & 1 \\ 1 & -1 \\ 1 \\ 0\end{array}\right\rangle$	
$\left\|\begin{array}{lll}2 & 1 & 0 \\ & 1 & \\ & & 1\end{array}\right\|$	$\left\|\begin{array}{ll}8 & 0 \\ 1 & 0 \\ 0\end{array}\right\|$	$-\frac{1}{\sqrt{3}}\left\|\begin{array}{cc}1 & 1 \\ 1 & 1 \\ 1 \\ 0\end{array}\right\rangle+\sqrt{\frac{2}{3}}\left\|\begin{array}{ll}1 & 0 \\ 0 & 0 \\ 0 \\ 0\end{array}\right\rangle$	
$\left\|\begin{array}{llll}1 & 1 & & 1 \\ & 1 & & 1 \\ & & 1 & \end{array}\right\|$	$\left\|\begin{array}{ll}1 & 0 \\ 1 & 0 \\ 0\end{array}\right\rangle$	$-\sqrt{\frac{2}{3}}\left\|\begin{array}{cc}1 & 1 \\ 1 & 1 \\ 1 \\ 0\end{array}\right\rangle-\frac{1}{\sqrt{3}}\left\|\begin{array}{ll}1 & 0 \\ 0 & 0 \\ 0 \\ 0\end{array}\right\rangle$	
$\left\|\begin{array}{lll}2 & 1 & 0 \\ 2 & & 0\end{array}\right\|$	$\left\|\begin{array}{rrr}8 & & 0 \\ 3 & & 0 \\ -1\end{array}\right\|$	$\left\|\begin{array}{cc}1 & 1 \\ 1 & -1 \\ & 1 \\ -1\end{array}\right\rangle$	

Table 2-continued

$\left\|\nu_{i j}\right\rangle^{\{211\}}$	$\left\|\begin{array}{ccc}\mu & & Z \\ \lambda & Y \\ & I_{3} & \end{array}\right\rangle^{(211)}$	$\left\|\sigma_{i i}\right\rangle^{[110]}$
$\left\|\begin{array}{llll}2 & 1 & 0 \\ & 1 & & 0 \\ & & 1\end{array}\right\rangle$	$\left\|\begin{array}{rr}8 & 0 \\ 2 & -1 \\ \frac{1}{2}\end{array}\right\rangle$	$-\frac{1}{2}\left\|\begin{array}{cc}1 & 0 \\ 1 & 0 \\ 1 \\ 0\end{array}\right\rangle+\frac{i}{2}\left\|\begin{array}{cc}1 & 1 \\ 1 & 0 \\ 0 \\ 0\end{array}\right\rangle-\frac{i}{2}\left\|\begin{array}{cc}1 & 0 \\ 1 & 0 \\ 1 \\ 0\end{array}\right\rangle\left\langle-\frac{1}{2} \left\lvert\, \begin{array}{cc}1 & 0 \\ 1 & 0 \\ 0 \\ 0\end{array}\right.\right\rangle$
$\left\|\begin{array}{lll}2 & 1 & 0 \\ & 1 & \\ & & 0\end{array}\right\rangle$	$\left\|\begin{array}{cc}8 & 0 \\ 2 & -1 \\ -\frac{1}{2}\end{array}\right\|$	$-\frac{1}{\sqrt{2}}\left\|\begin{array}{cc}1 . & 1 \\ 1 & 0 \\ & 1 \\ -1\end{array}\right\rangle-\frac{i}{\sqrt{2}}\left\|\begin{array}{cc}1 & 0 \\ 1 & 0 \\ & 1 \\ -1\end{array}\right\rangle$
$\left\|\begin{array}{llll}1 & 1 & & 0 \\ & 1 & & 1 \\ & & 1\end{array}\right\|$	$\left\|\begin{array}{cc}\overline{3} & -1 \\ 1 & \frac{2}{3} \\ & 0\end{array}\right\|$	$\left\|\begin{array}{ll}1 & 1 \\ 1 & 1 \\ 1 \\ 1\end{array}\right\rangle$
$\left\|\begin{array}{llll}1 & 1 & & 0 \\ & 1 & & 0 \\ & 1 & \end{array}\right\|$	$\left\|\begin{array}{cc}\overline{3} & -1 \\ 2 & -\frac{1}{3} \\ \frac{1}{2}\end{array}\right\|$	$\frac{1}{\sqrt{2}}\left\|\begin{array}{ll}1 & 1 \\ 1 & 0 \\ 1 \\ 1\end{array}\right\rangle+\frac{\mathbf{i}}{\sqrt{2}}\left\|\begin{array}{ll}1 & 0 \\ 1 & 0 \\ 1 \\ 1\end{array}\right\rangle$
$\left\|\begin{array}{lll}1 & 1 & 0 \\ & 1 & \\ & 0 \\ & 0\end{array}\right\|$	$\left\|\begin{array}{cc}\overline{3} & -1 \\ 2 & -\frac{1}{3} \\ & -\frac{1}{2}\end{array}\right\rangle$	$\left.\frac{1}{2}\left\|\begin{array}{ll}1 & 1 \\ 1 & 0 \\ 1 \\ 0\end{array}\right\rangle+\frac{i}{2}\left\|\begin{array}{ll}1 & 1 \\ 1 & 0 \\ 0 \\ 0\end{array}\right\rangle\right)+\frac{i}{2}\left\|\begin{array}{cc}1 & 0 \\ 1 & 0 \\ 1 \\ 0\end{array}\right\rangle\left\langle-\frac{1}{2} \left\lvert\, \begin{array}{ll}1 & 0 \\ 1 & 0 \\ 0 \\ 0\end{array}\right.\right\rangle$

Noting equations (2.8), the shift properties $(\Delta X, \Delta Z, \Delta Y)$ of $D_{34}, D_{\overline{34}}$ are ($-1,-\frac{1}{2},-$ $\frac{2}{3}$) and ($-1, \frac{1}{2}, \frac{2}{3}$), respectively. However,

$$
\left[D_{\overline{2} 3},\left[D_{23}, D_{34}\right]\right]=-D_{\overline{3} 4}
$$

so that, in addition to D_{12}, D_{23} and $D_{\overline{12}}$, only one of D_{34} and $D_{\overline{34}}$ is an independent shifting operator.

In analogy with the $\operatorname{SU}(4)$ case, we adopt the convention that the matrix elements of D_{34} be positive; where a given state is mapped to two different states in the same $\mathrm{SU}(4) \times \mathrm{U}(1)$ multiplet, the state with higher weight has a positive matrix element. : (In the unitary case, this qualification is superfluous, since all matrix elements are positive.)

With this choice, the transformation between the $\mathrm{SO}(7) \supset \mathrm{SO}(6)$ and the $\mathrm{SU}(4) \times$ $U(1)$ bases in any irreducible representation of $S O(8)$ is determined, and the matrix elements of the $\mathrm{SO}(8)$ generators in the $\mathrm{SU}(4) \times \mathrm{U}(1)$ basis may be written down, enabling direct products of irreducible representations of $S O(8)$ to be decomposed into their irreducible representations of $\mathrm{SO}(8)$ to be decomposed into their irreducible parts. Table 3 gives the matrix elements of D_{34} in the basic representation 8_{+}. The notation for labelling states is explained in § 4.

Table 3. Non-zero matrix elements of D_{34} in the \S_{+}multiplet.

4. Tables of singlet factors

The general $\mathrm{SO}(8)$ Clebsch-Gordan coefficient is written as
$C^{*} G=\left(\begin{array}{cc|c}\sigma_{1} & \sigma_{2} & \sigma \\ \nu_{1} X_{1} & \nu_{2} X_{2} & \nu X\end{array}\right)\left(\begin{array}{cc|c}\nu_{1} & \nu_{2} & \nu \\ \mu_{1} Z_{1} & \mu_{2} Z_{2} & \mu Z\end{array}\right)\left(\begin{array}{cc|c}\mu_{1} & \mu_{2} & \mu \\ \lambda_{1} Y_{1} & \lambda_{2} Y_{2} & \lambda Y\end{array}\right) C_{I_{3_{1} I_{3}} I_{3}}^{\lambda_{1} \lambda_{2}}$
where the irreducible representation labels $\left[\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{4}\right],\left\{\nu_{1} \nu_{2} \nu_{3}\right\},\left\{\mu_{1} \mu_{2}\right\}$ and $\left\{\lambda_{1}\right\}$ of $\mathrm{SO}(8), \mathrm{SU}(4), \mathrm{SU}(3)$ and $\mathrm{SU}(2)$, respectively, have been replaced by their dimensions σ, ν, μ and λ, and

$$
\begin{array}{ll}
\left(\begin{array}{cc|c}
\sigma_{1} & \sigma_{2} & \sigma \\
\nu_{1} X_{1} & \nu_{2} X_{2} & \nu X
\end{array}\right) & \text { is the } \mathrm{SU}(4) \text { singlet factor, } \\
\left(\begin{array}{cc|c}
\nu_{1} & \nu_{2} & \nu \\
\mu_{1} Z_{1} & \mu_{2} Z_{2} & \mu Z
\end{array}\right) & \text { is the } \mathrm{SU}(3) \text { singlet factor, } \\
\left(\begin{array}{cc|c}
\mu_{1} & \mu_{2} & \mu \\
\lambda_{1} Y_{1} & \lambda_{2} Y_{2} & \lambda Y
\end{array}\right) & \text { is the } \mathrm{SU}(2) \text { (de Swart) factor, }
\end{array}
$$

and $C_{I_{1} 1}^{\lambda_{1} \lambda_{3} I_{2} I_{3}}$ is the $\operatorname{SU}(2)$ Clebsch-Gordan coefficient.
Singlet factors are arranged in tables, according to the values of ν and X (or μ and Z, λ and Y, etc). The following phase conventions for the singlet factors are adopted.
(i) The highest Clebsch-Gordan coefficient in any expansion is defined to be +1 . This means that the highest single factor is also +1 .
(ii) For fixed σ (or ν, μ, etc), the highest singlet factor in the highest table is chosen to be positive. The highest table is the one having the highest X, and then highest ν (or highest Z, and then highest μ, etc). Within a table, the highest singlet factor is the one having the highest ν_{1}, and then highest ν_{2} (or highest μ_{1}, and then highest μ_{2}, etc). 15_{D} is taken to be higher than 1_{F}, and 8_{D} higher than 8_{F}.
(iii) 'Highest' for irreducible representations $\{\nu\}$ of $\operatorname{SU}(4)$ means that irreducible representation having maximal Z, then maximal Y, then maximal I_{3}. These definitions carry over similarly to $\operatorname{SU}(3)$, and $\mathrm{SU}(2)$. In the latter case, 'highest' simply means 'highest dimensional'.
Table 4. SU(3) singlet factors for $\nu_{1} \times \nu_{2}$ contains ν, with ν_{1}, ν_{2}, ν any of $1,4, \overline{4}, 6,10,10$ and 15 of SU(4).

Table 4.-continued

Table 4 -continued

Table 5. SU(4) singlet factors for $\sigma_{1} \times \sigma_{2}$ contains σ, with $\sigma_{1}, \sigma_{2}, \sigma$ any of $1,8_{+}, \underline{28}$ and $\underset{\sim}{35}+$ of $\operatorname{SO}(8)$.

Table 5.-continued

The singlet factors have the following symmetry properties, characterised by real phase factors, under interchange of factors 1 and 2 , and complex conjugation:
$\left(\begin{array}{cc|c}\sigma_{1} & \sigma_{2} & \sigma \\ \nu_{1} X_{1} & \nu_{2} X_{2} & \nu\end{array}\right)=\xi_{1} \eta_{1}\left(\begin{array}{cc|c}\sigma_{2} & \sigma_{1} & \sigma \\ \nu_{2} X_{2} & \nu_{1} X_{1} & \nu X\end{array}\right)$
$\left(\begin{array}{cc|c}\sigma_{1} & \sigma_{2} & \sigma \\ \nu_{1} X_{1} & \nu_{2} X_{2} & \nu X\end{array}\right)=\xi_{3} \eta_{3}\left(\begin{array}{cc|c}\sigma_{1} & \sigma_{2} & \sigma \\ \bar{\nu}_{1}-X_{1} & \bar{\nu}_{2}-X_{2} & \bar{\nu}-X\end{array}\right)$
$\left(\begin{array}{cc|c}\nu_{1} & \nu_{2} & \nu \\ \mu_{1} Z_{1} & \mu_{2} Z_{2} & \mu Z\end{array}\right)=\eta_{1} \epsilon_{1}\left(\begin{array}{cc|c}\nu_{2} & \nu_{1} & \nu \\ \mu_{2} Z_{2} & \mu_{1} Z_{1} & \mu Z\end{array}\right)$
$\left(\begin{array}{cc|c}\nu_{1} & \nu_{2} & \nu \\ \mu_{1} Z_{1} & \mu_{2} Z_{2} & \mu z\end{array}\right)=\eta_{3} \epsilon_{3}\left(\begin{array}{cc|c}\bar{\nu}_{1} & \bar{\nu}_{2} & \bar{\nu} \\ \bar{\mu}_{1}-Z_{1} & \bar{\mu}_{2}-Z_{2} & \bar{\mu}-Z\end{array}\right)$
$\left(\begin{array}{cc|c}\mu_{1} & \mu_{2} & \mu \\ \lambda_{1} Y_{1} & \lambda_{2} Y_{2} & \lambda Y\end{array}\right)=\epsilon_{1}(-1)^{I-I_{1}-I_{2}}\left(\begin{array}{cc|c}\mu_{2} & \mu & \mu \\ \lambda_{2} Y_{2} & \lambda_{1} Y_{1} & \lambda Y\end{array}\right)$
$\left(\begin{array}{cc|c}\mu_{1} & \mu_{2} & \mu \\ \lambda_{1} Y_{1} & \lambda_{2} Y_{2} & \lambda Y\end{array}\right)=\epsilon_{3}(-1)^{I-I_{1}-I_{2}}\left(\begin{array}{cc|c}\bar{\mu}_{1} & \bar{\mu}_{2} & \bar{\mu} \\ \lambda_{1}-Y_{1} & \lambda_{2}-Y_{2} & \lambda-Y\end{array}\right)$
$C_{I_{3_{1}} I_{3} I_{3}}^{I_{1} I_{1} I}=(-1)^{I-I_{1}-I_{2}} C_{I_{3_{2}} I_{3} I_{3}}^{I_{1} I_{1} I}$
$C_{I_{1} 1_{2} I_{3}}^{I_{1} I_{2} I}=(-1)^{I-I_{1}-I_{2}} C_{-I_{1}-I_{3}-I_{3}}^{I_{1} I_{1} I}$
These relations embody the fact that for $\operatorname{SO}(8)$ and $\operatorname{SU}(2)$, the complex conjugates [$\bar{\sigma}]$ and $\{\bar{\lambda}\}$ are equivalent to $[\sigma]$ and $\{\lambda\}$, respectively.

Table 4 gives the relevant $S U(3)$ singlet factors required, in addition to those given by Haacke et al (1976), where the same phase conventions are used. All the relevant $S U(2)$ singlet factors are also to be found there.

Table 5 gives the $\mathrm{SU}(4)$ singlet factors for all $\mathrm{SO}(8)$ decompositions involving the representations $\underset{\sim}{1}, 8_{+}, 28$ and $35+$ sufficient to perform calculations of the mass breaking, and of scattering and decay amplitudes in the meson sector of the $\mathrm{SO}(8)$ model. The symmetry factors ξ_{1} and ξ_{3} are also given.

Acknowledgments

The authors would like to thank Dr R C King for discussions, and for a critical reading of the manuscript. Partial support from the SRC is gratefully acknowledged.

References

Aubert J J et al 1974 Phys. Rev. Lett. 331404
Augustin J E et al 1974 Phys. Rev. Lett. 331406
Barnes K J, Jarvis P D and Ketley I J 1978 J. Phys. G: Nucl. Phys. submitted for publication
Gel'fand I M, Minlos R A and Shapiro Z Ya 1963 Representations of the Rotation and Lorentz Groups and Their Applications (New York: Pergamon)
Gel'fand I M and Zetlin M L 1950 Dokl. Akad. Nauk 71825
Gilmore R J 1970 J. Math. Phys. 113420
Goldhaber Get al 1976 Phys. Rev. Lett. 37255
Haacke E M, Moffat J W and Savaria P 1976 J. Math. Phys. 172041

Herb S W et al 1977 Phys. Rev. Lett. 39252
Nagel J G and Moshinsky M 1965 J. Math. Phys. 6682
Perl M et al 1975 Phys. Rev. Lett. 351489
Peruzzi I et al 1976 Phys. Rev. Lett. 37569
Wong M F K 1967 J. Math. Phys. 81233

[^0]: \dagger In particular, the labels $X^{\prime}, X^{\prime \prime}$, are redundant for the following $\operatorname{SO}(8)$ representations: $\left[\sigma, \sigma, \sigma, \sigma^{\prime}\right]$, $\left[\sigma, \sigma, \sigma^{\prime}, \sigma^{\prime}\right],\left[\sigma, \sigma^{\prime}, \sigma^{\prime}, \sigma^{\prime}\right]$ and $\left[\sigma, \sigma, \frac{1}{2},-\frac{1}{2}\right]$.

